DAMETHMEAT

INTRODUCTION

- An equation of the form $a x+b y+c=0$
- Where a, b and c are real numbers, and a and b are both zero, is called pair of linear equation in two variables x and y .
- The standard form of a pair of a linear equation in two variables x and y is
- $A 1 x+b 1 y+c 1=0$
- $A 2 x+b 2 y+c 2=0$
${ }^{04200}$ Where a1, b1, c1, a2, b2, c2 are real numbers.

OF SOLVING EQUATION

* The graphical method of solving a equation is not always convenient specially when the point representing the solution has non-integral coordinates. So, we have to search alternative method of finding the solution. The algebraic method is used in this case.

Where are three types of method

SUBSTITUTION METHOD

WTEP 1 : express y in terms of x from either equation.

ش STEP 2 : substitute this value of y in the other equation resulting it to reduce in an equation in x. solve it for x.
\& STEP 3 : substitute this value of x in the equation used in step 1 to obtain the value of y and get the value of y.

EXAMPLE

1) $x+y=17$
$2 x-3 y=11$
$x+y=17$
$2 x-3 y=11$

From equation (1)

$$
\begin{equation*}
y=7-x \longrightarrow \tag{3}
\end{equation*}
$$

Substitute this value of y in equation (2) we get

$$
\begin{aligned}
& 2 x-3(7-x)=11 \\
& 2 x-21+3 x=11 \\
& 5 x-21=11 \\
& 5 x=11+21
\end{aligned}
$$

Substitute this value of y in equation (3)
we get $y=7-32 / 5$

$$
\begin{aligned}
& y=35-32 / 5 \\
& y=3 / 5
\end{aligned}
$$

$$
x=32 / 5
$$

$y=3 / 5$

ELEMINATION METHOD

a) step 1 : multiply both the equation by the same suitable non-zero constant to make the coefficient of one variable numerically equal.
4) STEP 2 : then add or subtract one equation from the other so that one variable gets eliminated.
4) STEP 3 : solve the resulting equation in one variable so obtained and get the value.
4. STEP 4 : substitute this value of x or y in either of the original equation and get the value of the other variables.

EXAMPLE

(1) $5 x+3 y=70$

$$
3 x-7 y=60
$$

$$
\begin{aligned}
& 5 x+3 y=70 \\
& 3 x-7 y=60
\end{aligned}
$$

multiplying equation (1) by 3
multiplying equation (2) by 5
$15 x+9 y=210$
$15 x-35 y=300$
subtracting equation (4) from equation (3) we getl
$15 x+9 y=210$
$15 x-35 y=300$

CROSS-MULTTPLICATION METHOD

A STEP 1 : draw a diagram as follow $\begin{array}{lll}X & Y & 1\end{array}$

4. STEP 2 : then write the equation as follows
-B1c2-b2ct
\qquad

a2b1
(1) STEP 3 , $1 \mathrm{fa} 162-a 261=0$ find \times and y as follows

$$
\begin{aligned}
& \text { EXAMPLE } \\
& \text { 1) } 11 x+15 y+23=0 \\
& 7 x-2 y-20=0 \\
& =\frac{Y}{(23)(7)-(120)(11)}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \frac{X}{-300+46}=\frac{Y}{161+220}=\frac{1}{-22-105} \\
& \rightarrow \frac{X}{-254}=\frac{Y}{381}=\frac{1}{-127} \\
& X=-254 /-127=2 \\
& Y=381 /-127=3 \\
& X=2 \\
& Y=3
\end{aligned}
$$

GRAPHICAL METHOD OF SOLVING EQUATION

- graphical representation of linear equation in two variables is a straight line. As a straight line consist of an infinite no of points lying on it.
- Given a pair of linear equation in two variables representing two straight lines taken together, only one of the following three possibilities can occur

The two lines intersect at one point.
The two lines are parallel.
z The two lines are coincident.

- The two lines intersects at one point

- the two lines are parallel

the two lines are coincident

Sangeeta has socks and hand kerchiefs which are together 40 in no. If she has 5 less handkerchiefs and 5 more socks, the number of socks becomes four times the number of hand kerchiefs. Represent this situation in algebraically and graphically.

$$
\begin{align*}
& x+y=40 \tag{1}\\
& x+5=4(y-5) \\
& x+5=4 y-20 \tag{2}\\
& x-4 y=-25
\end{align*}
$$

For equation (1)
$X+y=40$
$\mathrm{Y}=40-\mathrm{x}$.
For equation (2)

$$
\begin{aligned}
X-4 y & =-25 \\
4 y & =x+25
\end{aligned}
$$

X $20 \quad 40$
Y $20 \quad 0$

THE END

